Search results for "Brownian dynamics"
showing 10 items of 29 documents
Dynamics of Colloidal Hard Spheres in Thin Aqueous Suspension Layers—Particle Tracking by Digital Image Processing and Brownian Dynamics Computer Sim…
1993
Abstract A new experimentally simple technique is introduced for studying dynamical properties of hard sphere colloids in thin aqueous suspension layers by light-microscopy observation supported by computer-aided digital image processing. The thickness of the layers of the colloidal samples confined between two smooth glass plates is accurately adjusted by monodisperse "spacer" spheres which are larger than the diffusing spheres. Tracking of single particles in concentrated phases is accomplished using fluorescence light microscopy where a few dyed particles are mixed with the undyed colloidal spheres of the same size. First results are presented for the self-diffusion coefficient—(i) in ve…
Brownian dynamics of polydisperse colloidal hard spheres: Equilibrium structures and random close packings
1994
Recently we presented a new technique for numerical simulations of colloidal hard-sphere systems and showed its high efficiency. Here, we extend our calculations to the treatment of both 2- and 3-dimensional monodisperse and 3-dimensional polydisperse systems (with sampled finite Gaussian size distribution of particle radii), focusing on equilibrium pair distribution functions and structure factors as well as volume fractions of random close packing (RCP). The latter were determined using in principle the same technique as Woodcock or Stillinger had used. Results for the monodisperse 3-dimensional system show very good agreement compared to both pair distribution and structure factor predic…
Environmental Noise and Nonlinear Relaxation in Biological Systems
2012
We analyse the effects of environmental noise in three different biological systems: (i) mating behaviour of individuals of 'Nezara viridula' (L.) (Heteroptera Pentatomidae); (ii) polymer translocation in crowded solution; (iii) an ecosystem described by a Verhulst model with a multiplicative Lèvy noise. Specifically, we report on experiments on the behavioural response of 'N. viridula' individuals to sub-threshold deterministic signals in the presence of noise. We analyse the insect response by directionality tests performed on a group of male individuals at different noise intensities. The percentage of insects which react to the sub-threshold signal shows a non-monotonic behavior, charac…
Colloidal crystallization in the quasi-two-dimensional induced by electrolyte gradients.
2012
We investigated driven crystal formation events in thin layers of sedimented colloidal particles under low salt conditions. Using optical microscopy, we observe particles in a thermodynamically stable colloidal fluid to move radially converging towards cation exchange resin fragments acting as seed particles. When the local particle concentration has become sufficiently large, subsequently crystallization occurs. Brownian dynamics simulations of a 2D system of purely repulsive point-like particles exposed to an attractive potential, yield strikingly similar scenarios, and kinetics of accumulation and micro-structure formation. This offers the possibility of flexibly designing and manufactur…
Nonequilibrium depletion interactions in active microrheology.
2017
Entropic depletion forces arise between mesoscopic bodies that are immersed in a suspension of macromolecules, such as colloid-polymer mixtures. Here we consider the case of a driven colloidal probe in the presence of another, passive colloidal particle, both solvated in an ideal bath of small spherical particles. We calculate the nonequilibrium forces mediated by the depletants on the two colloidal particles within a dynamical superposition approximation (DSA) scheme. In order to assess the quality of this approximation, and to obtain the colloidal microstructure around the driven probe, we corroborate our theoretical results with Brownian dynamics simulations.
Effects of confinement and external fields on structure and transport in colloidal dispersions in reduced dimensionality
2012
In this work, we focus on low-dimensional colloidal model systems, via simulation studies and also some complementary experiments, in order to elucidate the interplay between phase behavior, geometric structures and transport properties. In particular, we try to investigate the (nonlinear!) response of these very soft colloidal systems to various perturbations: uniform and uniaxial pressure, laser fields, shear due to moving boundaries and randomly quenched disorder.We study ordering phenomena on surfaces or in monolayers by Monte Carlo computer simulations of binary hard-disk mixtures, the influence of a substrate being modeled by an external potential. Weak external fields allow a control…
Hybrid particle-continuum simulations coupling Brownian dynamics and local dynamic density functional theory
2017
We present a multiscale hybrid particle-field scheme for the simulation of relaxation and diffusion behavior of soft condensed matter systems. It combines particle-based Brownian dynamics and field-based local dynamics in an adaptive sense such that particles can switch their level of resolution on the fly. The switching of resolution is controlled by a tuning function which can be chosen at will according to the geometry of the system. As an application, the hybrid scheme is used to study the kinetics of interfacial broadening of a polymer blend, and is validated by comparing the results to the predictions from pure Brownian dynamics and pure local dynamics calculations.
Bidirectional random motion driven by globally coupled noisy active elements in an electric field
2004
The assembly of the insulating Brownian particles globally coupled due to the macroscopic flow of the liquid with low conductivity has transitions between the states of random motion and random bidirectional and unidirectional motion. The threshold values of the parameters for the transition to random bidirectional motion is found by the effective field method and correspond to those found by Brownian dynamics. The behavior of the assembly is similar to the behavior of different active multistable systems.
Brownian dynamics simulations of colloidal hard spheres. Effects of sample dimensionality on self-diffusion
1994
The self-diffusion coefficients of colloidal hard spheres were determined by Brownian dynamics (BD) computer simulations using a new efficient algorithm for treatment of the hard-sphere interactions. Calculations were done on an Apple PC type MacIIcx and on a Micro VAX 3000, considering samples in two and three dimensions at varying particle concentrations. Our results in three dimensions are compared with experimental results from our own group which were obtained by forced Rayleigh scattering (FRS), and with numerical results from a dynamical Monte Carlo simulation by Cichocki and Hinsen. Good agreement with the latter was found for particle volume fractions up to 0.40. Differences in the…
Thermodynamic formalism for transport coefficients with an application to the shear modulus and shear viscosity.
2016
We discuss Onsager's thermodynamic formalism for transport coefficients and apply it to the calculation of the shear modulus and shear viscosity of a monodisperse system of repulsive particles. We focus on the concept of extensive "distance" and intensive "field" conjugated via a Fenchel-Legendre transform involving a thermodynamic(-like) potential, which allows to switch ensembles. Employing Brownian dynamics, we calculate both the shear modulus and the shear viscosity from strain fluctuations and show that they agree with direct calculations from strained and non-equilibrium simulations, respectively. We find a dependence of the fluctuations on the coupling strength to the strain reservoi…